Loading [MathJax]/jax/output/PreviewHTML/jax.js
经典等周问题的复分析证明

经典等周问题的复分析证明

关于等周不等式的历史

直接引用文献中对于等周问题的介绍:

最早的几何不等式应该是著名的等周不等式, 该不等式具有悠久的历史. 等周问题最早由著名数学家 Joham Beynoulli 在 1679 年提出, 从等周定理的提出到现在, 人们关于等周问题的研究讨论从未停止过, 研究成果不断的推陈出新, 使得等周型不等式的研究领域欣欣向荣, 可以说等周定理是数学史上被证明次数最多的定理之一…

从实用性的角度来看, 在数学家正式提出等周定理之前, 人类乃至动物界已经在不自觉地使用这个定理了, 比如:人们使用定长的绳子圈地的过程中, 当绳子以圆形的方式圈地时, 得到的土地面积最大; 在寒冷的冬季, 人类或者动物会缩成一团, 为的就是在体积一定的情况下, 尽量缩小自己的表面积, 减小热量的损失;在物理中, 等周不等式问题和跟所谓的最小作用量有关, 一个直观的表现就是水珠的形状, 在没有外力的情况下(如失重的太空舱里), 水珠的形状是完全对称的球体, 这是因为当水珠体积一定时, 表面张力会迫使水珠的表面积达到最小值, 根据等周不等式的原理, 最小值在水珠形状为球状时达到…

等周不等式的一个经典的证明是利用变分方法, 本文中介绍由复分析, 调和分析领域著名数学家 Carleman 给出的复分析证明. 由此出发, 也引出了一系列函数空间理论上的问题之研究.

阅读更多

复分析学习笔记 - Littlewood 从属定理

从属性

首先介绍函数从属性的概念. 这一概念,最早来自于 Lindelöf 在 1908 年给出的一个定理, 现在常称为 Lindelöf 原理.

我们设 均为 \mathbb{D} 中的解析函数. 若存在解析函数 \varphi: \mathbb{D}\rightarrow \mathbb{D}, 使得 \varphi(0) = 0f = g\circ \varphi 对于一切 z\in \mathbb{D} 均成立, 则称 f 从属于 g, 记为 f\prec g.

事实上, 设 g(z)\mathbb{D} 上的单叶解析函数, 满足g(0) = 0. 再设 f(z)\mathbb{D} 上的解析函数, 其满足f(0) = 0, 并且 f 的值域落在 F 的值域中. 于是函数 \varphi(z) = g^{-1} \circ f\mathbb{D} 上良定的解析函数, 并且满足 \varphi(0) = 0, 以及 |\varphi(z)|\leqslant 1. 由 Schwarz 引理, 上述条件等价于要求: |\varphi(z)|\leqslant |z|f = g\circ w 对于一切 z\in \mathbb{D} 均成立.

几何直观上看, f\prec g 意味着对任意的闭圆盘 \overline{D(0,r)}, r\in(0,1)f = g\circ \varphi 作用下的像, 都落在 g 对同一个圆盘作用的像中. 也可以说, 在某种意义下, fg 要”小”. 而 Littlewood 从属定理正是对这一事实的精确表述.

阅读更多

三圆定理

凸函数

可进一步参考Convex Function of a Real Variable 以及 Convex Function of a Complex Variable.

Definition.
I 为区间, 函数 f: I\rightarrow \mathbb{R} 称为(下)凸函数, 若 \forall x_1, x_2 \in I (不妨设x_1 < x_2), \forall t\in (0,1), 有以下不等式成立:
f((1-t)x_1+tx_2) \leqslant (1-t)f(x_1) + tf(x_2).
A\in \mathbb{C} 称为凸集, 若 \forall z,w \in A, \forall 0\leqslant t\leqslant 1, 点 tz + (1-t)w \in A.

f(x) 为凸函数的条件可以等价的写成: \forall x_1, x_2, x_3\in I, 满足 x_1 < x_3 < x_2, 有
(x2x1)f(x3)(x2x3)f(x1)+(x3x1)f(x2).\begin{equation} (x_2 - x_1) f(x_3) \leqslant (x_2 - x_3) f(x_1) + (x_3 - x_1) f(x_2). \end{equation}
上式也可以写成
f(x1)x11f(x2)x21f(x3)x310\begin{equation} \left|\begin{matrix} f(x_1) & x_1 & 1 \\ f(x_2) & x_2 & 1 \\ f(x_3) & x_3 & 1 \\ \end{matrix}\right| \geqslant 0 \end{equation}

凸函数(Convex)的几何意义是明显的. 即其上任意两点的连线, 必然位于两点之间函数图像的上方. 相对应的, 不等号反向的情况下称其为 Concave (上凸).

阅读更多

泛函中的重要定理之 Hahn-Banach 定理

个人学习笔记整理而来, 内容如有错漏欢迎电邮联系. a collection of personal math notes.

Hahn-Banach Theorem is one of the core theorems of linear functional analysis. The Hahn-Banach Theorem in Vector Space is also called Analytic Form of Hahn-Banach Theorem. Two corollaries are especially important: Hahn-Banach Theorem in Normed Vector Space, and Geometric Form of Hahn-Banach Theorem.

Analytic Form

定理.[Hahn-Banach Theorem in Real Vector Space]

Let X be a real vector space, and p is a sublinear functional in X, that is, p:X\rightarrow\mathbb{R} is a function satisfies the following properties:

\begin{eqnarray}p(\alpha x) = \alpha p(x),\quad \forall \alpha>0 \text{ and } x\in X,\\p(x+y) \leqslant p(x)+p(y)\quad \forall x,y\in X.\end{eqnarray}
And let Y be a subspace of X, l:Y\rightarrow\mathbb{R} is a linear functional in Y which satisfies
l(y)\leqslant q(y),\quad \forall y\in Y.
Then there exists a linear functional \widetilde{j}:X\rightarrow\mathbb{R}, such that
\widetilde{l}(y)=l(y),\quad \forall y\in Y.\quad \text{ and } \widetilde{l}(y)\leqslant p(x),\quad \forall x\in X.

阅读更多
关于连通性的简单讨论

关于连通性的简单讨论

说明. 本文为以前学习拓扑学时的部分笔记, 现发布于博客中供参考备忘. 若有读者发现错漏之处, 敬请电邮联系更正.

Recall: 连通性的基本概念

【定义】[连通性] X 为一拓扑空间. 若 X 的一对非空开子集 U,V 满足 U\cap V = \varnothing, U\cup V =X, 则称 U,V 是分离的, 它们构成 X 的一个分解. 若 X 存在这样的分解, 则称 X不连通的, 否则称为连通的.

关于连通性有以下等价描述:

空间 X 是连通的, 当且仅当除了 X 自身和 \varnothing 外, 不存在其他既开又闭的子集.

Note. 由于连通性的定义仅涉及到一族开子集之间的关系, 显然, 这个概念是一个拓扑概念. 事实上, 连通性具有遗传性, 同时在连续映射, 有限积下依然保持.

阅读更多