关于积拓扑和 Tychonoff 定理

说明. 本文为以前学习拓扑学时的部分笔记, 现发布于博客中供参考备忘. 若有读者发现错漏之处, 敬请电邮联系更正.

首先在集合的层次上讨论积的概念, 然后再转向考虑积拓扑空间, 最后讨论了积空间紧性的问题.

集族的笛卡尔积

Note. 有限个集合的笛卡尔积被定义为有序数组的形式 $(x_1,\cdots,x_n)$, 其中 $x_{i} \in X_{i}$. 也可以将其视为一族 $X_1\times\cdots\times X_2$ 上的映射
$$\left\{x:{1,\cdots,n}\rightarrow X_1\cup\cdots\cup X_n\mid x(j)\in X_{j}, \forall j = 1,\cdots,n \right\}.$$
这个形式方便我们将笛卡尔积推广到一般的集族的情况上.

阅读更多

为函数空间赋予拓扑结构 - 一些例子

对于函数空间, 在需要研究其某些特定的性质时, 对于这个空间赋予适当的拓扑结构, 是非常有用的一种方法. 一个常见的方面就是: 通过其拓扑在给定的义意下讨论函数族收敛的概念.

在线性泛函分析学习中学过的赋范线性空间, 就是通过对空间赋予范数来引入拓扑结构–由范数可以自然的诱导相应的度量, 度量则给出了空间的拓扑结构. 当然, 并非所有的函数空间的拓扑结构都可以由范数给出, 于是我们有更一般的关联于所谓半范数族的拓扑线性空间.

阅读更多

$L^p$ 空间基本知识1-关于 Lebesgue 积分的一些结论

本Note收纳一些重要的关于 Lebesgue 积分的一些结论. 这里 $\Omega$ 总表示 $\mathbb{R}^n$ 中的开集, 具有 Lebesgue 测度 $dx$; $L^1(\Omega)$ 表示 $\Omega$ 上的可积函数空间.

Beppo Levi 单调收敛定理

设 ${f_n}$ 是 $L^1$ 中的递增序列(即 $\forall n, f_n\leqslant f_{n+1}~ a.e.$) 使得
$$\sup_{n}\int f_n <\infty,$$
那么 $f_n(x)$ 在 $\Omega$ 上几乎处处收敛, 记为 $f(x)$; 更进一步有 $f\in L^1$ 且 $|f_n- f|_{L^1}\rightarrow 0$.

Legesgue 控制收敛定理

设 ${f_n}$ 是 $L^1$ 中的函数序列. 假设

a) $f_n(x)\rightarrow f(x)$ a.e. 收敛于 $\Omega$ 中,

b) 存在函数 $g\in L^1$, 使得每个 $n$, $|f_n(x)|\leqslant g(x)$, a.e. 于 $\Omega$ 中.

则 $f\in L^1(\Omega)$, 并且 $|f_n-f|_{L^1}\rightarrow 0$.

阅读更多
学习 Galois 理论须知的群论概念

学习 Galois 理论须知的群论概念

内容节选自 from J. Rotman’s Galois Theory - Appendix 1. 仅供学习时备忘使用.

Abelian Group. A group in which multiplication is commutative.

Alternating Group $A_n$. The subgroup of $S_n$ consisting of all the even permutations. it has order $\frac{1}{2}n!$.

Associativity. For all $x,y,z$, one has $(xy)z=x(yz)$. it follows that one does not need parentheses for any product of three or more factors.

Automorphism. An isomorphism of a group with itself.

Commutativity. For all $x,y$, one has $xy=yx$.

阅读更多
群的例子
复分析小品-生成函数

复分析小品-生成函数

关于生成函数, 以下直接引用 wiki 百科上的介绍:

In mathematics, a generating function is a way of encoding an infinite sequence of numbers ($a_n$) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.

Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the “variable” remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

正如这段介绍中所说, 生成函数就是描述数列的另一种不同的方法而已, 这种方法将整个序列视作了一个对象进行考虑, 更具体的说, 就是个幂级数, 其系数有着某些特定含义.

作为一篇小品, 本文只简单介绍一下生成函数定义, 并利用该方法研究斐波那契数列.

阅读更多
复分析小品-分式线性变换

复分析小品-分式线性变换

在复分析中的几何理论中, 有一个有趣而且重要的主题, 即共形映射. 其中有一类很自然的解析函数类——分式线性变换.

考虑以下有理函数

$$f(z) = \frac{az+b}{cz+d}$$

其中,$a,b,c,d$ 均为复数. 要使得以上函数具有良好的定义, 很自然, 需要要求 $c,d$ 不能同时为 $0$; 另一方面, 为了保证函数不会退化成常数函数, 则需要满足 $a/c \neq b/d$.

综合来说, 当以上有理函数满足 $ad-bc\neq 0$ 时, 我们称之为一个分式线性变换. 我们都知道:

  • 分式线性变换的复合还是一个分式线性变换变换.
  • 任何分式线性变换都可以表示为三种简单变换的复合, 即:平移、旋转、反演的复合.

关于分式线性变换的很多性质, 留到谈共形映射时再谈. 以下提供一个有意思的视角, 也许能帮助我们更容易的认识分式线性变换.

阅读更多

数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(2)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 请研究下列级数当实参数 $\alpha$ 取各种值时在集合 $E\subset\mathbb{R}$ 上的收敛性.
    a) $$\sum_{n=1}^{\infty}\frac{\cos nx}{n^\alpha};$$
    b) $$\sum_{n=1}^{\infty}\frac{\sin nx}{n^\alpha}.$$

【解】 显然, 上述两个级数在 $\alpha\leqslant 0$ 时不收敛, 在 $\alpha > 1$ 时绝对一致收敛(强函数检验法). 考虑在 $0< \alpha \leqslant 1$ 时的情况.

阅读更多
数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(1)

数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(1)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 以下函数序列是否一致收敛?
    a) $$f_n = \frac{\sin{nx}}{x^2}$$
    b) $$f_n = 2(n+1)x(1-x^2)^n$$
    c) $$f_n = \lim_{n\rightarrow\infty}(\cos m!\pi x)^{2n}$$

【解】 考察 $\Delta _n := \sup _{x\in E}|f(x) - f_n(x)|$ 在 $n\rightarrow \infty$ 时的情况即可. 容易得到 a) 一致收敛, b)、c) 不一致收敛. Q.E.D.

阅读更多

切空间与切丛

本文旨在以简单直观的方式介绍切空间切丛的概念, 为之后的一系列准备发布的内容做知识上的准备.

在此, 有必要先辨析两个概念:”向量空间”, “流形”.

阅读更多