Review - $\mathbb{R}^{n}$ 上的拓扑(2)
继续上一篇笔记, 接下来关注两个重要的拓扑性质——极限和连续.
连续
从拓扑结构出发刻画 连续
关于一般拓扑空间的连续性, 有多个等价定义和命题[1], 这里暂且只提最基本的一个.
从拓扑空间 $(X,\mathscr{T})$ 到拓扑空间 $(Y,\mathscr{U})$ 内的映射 $f$ 称为连续的, 当且仅当对于 $\mathscr{U}$ 中的每一个开集, 其在 $\mathscr{T}$ 中的原像为开集; 每一个闭集, 其在 $\mathscr{T}$ 中的原像为闭集.