复分析小品-生成函数

复分析小品-生成函数

关于生成函数, 以下直接引用 wiki 百科上的介绍:

In mathematics, a generating function is a way of encoding an infinite sequence of numbers ($a_n$) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.

Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the “variable” remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

正如这段介绍中所说, 生成函数就是描述数列的另一种不同的方法而已, 这种方法将整个序列视作了一个对象进行考虑, 更具体的说, 就是个幂级数, 其系数有着某些特定含义.

作为一篇小品, 本文只简单介绍一下生成函数定义, 并利用该方法研究斐波那契数列.

阅读更多
复分析小品-分式线性变换

复分析小品-分式线性变换

在复分析中的几何理论中, 有一个有趣而且重要的主题, 即共形映射. 其中有一类很自然的解析函数类——分式线性变换.

考虑以下有理函数

$$f(z) = \frac{az+b}{cz+d}$$

其中,$a,b,c,d$ 均为复数. 要使得以上函数具有良好的定义, 很自然, 需要要求 $c,d$ 不能同时为 $0$; 另一方面, 为了保证函数不会退化成常数函数, 则需要满足 $a/c \neq b/d$.

综合来说, 当以上有理函数满足 $ad-bc\neq 0$ 时, 我们称之为一个分式线性变换. 我们都知道:

  • 分式线性变换的复合还是一个分式线性变换变换.
  • 任何分式线性变换都可以表示为三种简单变换的复合, 即:平移、旋转、反演的复合.

关于分式线性变换的很多性质, 留到谈共形映射时再谈. 以下提供一个有意思的视角, 也许能帮助我们更容易的认识分式线性变换.

阅读更多

数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(2)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 请研究下列级数当实参数 $\alpha$ 取各种值时在集合 $E\subset\mathbb{R}$ 上的收敛性.
    a) $$\sum_{n=1}^{\infty}\frac{\cos nx}{n^\alpha};$$
    b) $$\sum_{n=1}^{\infty}\frac{\sin nx}{n^\alpha}.$$

【解】 显然, 上述两个级数在 $\alpha\leqslant 0$ 时不收敛, 在 $\alpha > 1$ 时绝对一致收敛(强函数检验法). 考虑在 $0< \alpha \leqslant 1$ 时的情况.

阅读更多
数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(1)

数学分析习题解-一致收敛性、函数项级数与函数族的基本运算(1)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 以下函数序列是否一致收敛?
    a) $$f_n = \frac{\sin{nx}}{x^2}$$
    b) $$f_n = 2(n+1)x(1-x^2)^n$$
    c) $$f_n = \lim_{n\rightarrow\infty}(\cos m!\pi x)^{2n}$$

【解】 考察 $\Delta _n := \sup _{x\in E}|f(x) - f_n(x)|$ 在 $n\rightarrow \infty$ 时的情况即可. 容易得到 a) 一致收敛, b)、c) 不一致收敛. Q.E.D.

阅读更多

切空间与切丛

本文旨在以简单直观的方式介绍切空间切丛的概念, 为之后的一系列准备发布的内容做知识上的准备.

在此, 有必要先辨析两个概念:”向量空间”, “流形”.

阅读更多
逼近理论简介-Bernstein 多项式

逼近理论简介-Bernstein 多项式

逼近理论缘起

函数的最佳逼近问题起源于俄国数学家 P.L.切比雪夫. 1853 年, 当时切比雪夫正在研究关于将蒸汽引擎的线性运动转化为轮毂的圆周运动的联动装置的问题, 其中,他考虑了如下问题:

给出定义在闭区间 $[a, b]$ 上的连续函数 $f$, 以及正整数 $n$, 是否能用最高不超过 $n$ 次的多项式函数 $\sum_{k=0}^{n}a_k x^k$ 来近似表示函数 $f$, 在区间上的任意一点处的误差在可控制的范围内?

特别的, 我们是否能构造出多项式 $P(x)$ 使得误差 $\max_{a\leq x\leq b}|f(x)-P(X)|$ 最小?

阅读更多

数学分析习题解-连续函数(1)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.

  1. 请证明:
    a) 如果 $f\in C(A)$ 且 $B \subset A$, 则 $f|_ B = C(B)$.

    b) 如果函数 $f: E_{1} \cup E_2 \rightarrow \mathbb{R}$, 满足 $f|_ {E_i} \in C(E_i), i = 1,2$, 则未必 $f\in C(E_1\cup E_2)$.

    c) 黎曼函数 $\mathscr{R}$ 以及它在有理数集上的限制 $\mathscr{R}|_ {\mathbb{Q}}$ 在集合 $\mathbb{Q}$ 的每一个非零的点间断, 并且所有的间断点都是可去间断点.
阅读更多
数学分析习题解-函数极限(2)

数学分析习题解-函数极限(2)

续上一篇 数学分析习题解-函数极限(1). 这一部分习题主要涉及无穷乘积.

  1. 请证明:
    a) 级数 $\sum_{n=1}^{\infty}\ln a_n$ (其中 $a_n>0, n\in\mathbb{N}$) 收敛的充要条件是数列 $\{\prod_{n} = a_1\cdots a_n\}$ 有非零极限.

    b) 级数 $\sum_{n=1}^{\infty}\ln(1+a_n)$ (其中 $|a_n|<1$) 绝对收敛的充要条件是级数 $\sum_{n=1}^{\infty}a_n$ 绝对收敛.

【证明】
a) 若级数 $\sum_{n=1}^{\infty}\ln a_n$ 收敛, 则 $n\rightarrow\infty$ 时, $\sum_{k=1}^{n}\ln a_k = \ln(\Pi_n) $ 有极限. 由自然对数的性质立刻得知 $n\rightarrow\infty$ 时 $\Pi_n$ 趋于非零极限. 这些步骤都是可逆的, 必要性和充分性由此可以得到.

b) 由 $n\rightarrow\infty$ 时 $\ln (1+a_n)\sim a_n$ ($|a_n|<1$), 由前面的题 5 可知级数 $\sum_{n=1}^{\infty}|\ln(1+a_n)|$ 与级数 $\sum_{n=1}^{\infty}|a_n|$ 同时敛散. 故待证命题成立. Q.E.D.

阅读更多
数学分析习题解-函数极限(1)

数学分析习题解-函数极限(1)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

习题

  1. a) 请证明: 在 $\mathbb{R}$ 上定义且满足以下要求的函数存在并且是唯一的:
    \begin{array}{c}
    f(1)=a\quad(a>0, a\neq 1),\\
    f(x_1)\cdot f(x_2)=f(x_1+x_2),\\
    x\rightarrow x_0, f(x)\rightarrow f(x_0).
    \end{array}
    b) 请证明: 在 $\mathbb{R_+}$ 上定义且满足以下要求的函数存在并且是唯一的:
    \begin{array}{c}
    f(1)=a\quad(a>0, a\neq 1),\\
    f(x_1)\cdot f(x_2)=f(x_1+x_2),\\
    x_0\in \mathbb{R_+}, \mathbb{R_+}\ni x\rightarrow x_0, f(x)\rightarrow f(x_0).
    \end{array}
阅读更多
指数函数, 对数函数以及幂函数的定义

指数函数, 对数函数以及幂函数的定义

这里, 我们利用实数理论以及极限理论来完整的定义指数函数, 对数函数以及幂函数的定义.

指数函数 $a^x$

设 $a>1$.

  1. 对于 $n\in \mathbb{N}$, 归纳的定义 $a^1 = a, a^{n+1}=a^n\cdot a^1$, 这样我们就在 $\mathbb{N}$ 上定义了函数 $a^n$, 同时可以看出, 函数具有性质$a^m/a^n = a^{m-n}(m,n\in \mathbb{N}, m>n)$.
  2. 由上面这个性质, 我们可以自然的定义 $a^0: = 1, a^{-n} = 1/a^n $. 于是, $a^n$ 的定义自然的拓展到了整数集 $\mathbb{Z}$ 上. $\forall n,m\in \mathbb{Z}, a^n\cdot a^m = a^{n+m}$.
  3. 由实数理论, 我们知道 $\forall a> 0, n\in\mathbb{N},\exists \text{唯一的}x>0 (x^n = a)$. 用 $x = a^{1/n}$ 表示数 $a$ 的 $n$ 次方根. 这一记法保留了指数的加法规则. 于是我们可以进一步定义 $a^{m/n}(m,n\in\mathbb{N})$. 即对于 $r\in\mathbb{Q}$ 定义了 $a^r$.
  4. 由归纳原理, 可以验证 $\forall x>0, y>0, n\in\mathbb{N}$ 时有 $(x< y)\Leftrightarrow(x^n< y^n)$ 和 $(x= y)\Leftrightarrow(x^n= y^n)$.
  5. 由此我们可以证明有理指数的运算法则, 并得到 $\forall r_1,r_2\in \mathbb{Q}, a^{r_1}\cdot a^{r^2} = a^{r_1+r_2}$.
  6. 由 4. 知 $r_1,r_2\in \mathbb{Q}, (r_1<r_2)\Leftrightarrow (a^{r_1}< a^{r^2})$.
阅读更多