指数函数, 对数函数以及幂函数的定义

指数函数, 对数函数以及幂函数的定义

这里, 我们利用实数理论以及极限理论来完整的定义指数函数, 对数函数以及幂函数的定义.

指数函数 $a^x$

设 $a>1$.

  1. 对于 $n\in \mathbb{N}$, 归纳的定义 $a^1 = a, a^{n+1}=a^n\cdot a^1$, 这样我们就在 $\mathbb{N}$ 上定义了函数 $a^n$, 同时可以看出, 函数具有性质$a^m/a^n = a^{m-n}(m,n\in \mathbb{N}, m>n)$.
  2. 由上面这个性质, 我们可以自然的定义 $a^0: = 1, a^{-n} = 1/a^n $. 于是, $a^n$ 的定义自然的拓展到了整数集 $\mathbb{Z}$ 上. $\forall n,m\in \mathbb{Z}, a^n\cdot a^m = a^{n+m}$.
  3. 由实数理论, 我们知道 $\forall a> 0, n\in\mathbb{N},\exists \text{唯一的}x>0 (x^n = a)$. 用 $x = a^{1/n}$ 表示数 $a$ 的 $n$ 次方根. 这一记法保留了指数的加法规则. 于是我们可以进一步定义 $a^{m/n}(m,n\in\mathbb{N})$. 即对于 $r\in\mathbb{Q}$ 定义了 $a^r$.
  4. 由归纳原理, 可以验证 $\forall x>0, y>0, n\in\mathbb{N}$ 时有 $(x< y)\Leftrightarrow(x^n< y^n)$ 和 $(x= y)\Leftrightarrow(x^n= y^n)$.
  5. 由此我们可以证明有理指数的运算法则, 并得到 $\forall r_1,r_2\in \mathbb{Q}, a^{r_1}\cdot a^{r^2} = a^{r_1+r_2}$.
  6. 由 4. 知 $r_1,r_2\in \mathbb{Q}, (r_1<r_2)\Leftrightarrow (a^{r_1}< a^{r^2})$.
阅读更多

数学分析习题解-序列极限(3)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 请证明
  • a) 当 $n\leqslant 2$ 时, 以下等式成立: \begin{array}{l} & 1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}+\frac{1}{n!n}\\ = & 3 - \frac{1}{1\cdot 2\cdot 2!}-\cdots -\frac{1}{(n-1)n\cdot n!}.\end{array}
  • b) $$e = 3 - \sum_{n=0}^{\infty}\frac{1}{(n+1)(n+2)(n+2)!}.$$
  • c) 为近似计算 $e$, 公式 $$1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}+\frac{1}{n!n}$$ 远好于原来的公式 $$1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}.$$
阅读更多

数学分析习题解-序列极限(2):连分数

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

  1. 表达式 $$n_1 + \frac{1}{n_2 + \frac{1}{\begin{matrix} n_3 + \ddots & \\ & \frac{1}{n_{k-1}+\frac{1}{n_k}}\end{matrix}}},$$其中 $n_i\in\mathbb{N}$, 称为链式分数或有限连分数, 而表达式 $$n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \ddots}}$$称为无穷连分数. 在一个连分数中去掉某个链开始的所有分数, 所得分数称为这个连分数的渐进分数. 无穷连分数的渐进分数序列极限是该无穷连分数的值.
    关于连分数的基本性质, 参考 Continued Fraction.
    请证明:
阅读更多
数学分析习题解-序列极限(1)

数学分析习题解-序列极限(1)

【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2

习题

  1. 请证明:数 $x\in \mathbb{R}$ 是有理数的充要条件是,它在任何 q-进制计数法中是循环的,即从某一位数开始,它由一组周期性重复的数码组成。

【证明】 充分性: 若 $x$ 在任意 q-进制下是循环的, 设循环节长度为 $k$, 显然 $n = q^k x - x$ 为有限小数, 即 $n$ 为有理数, 那么由有理数对四则运算的封闭性, 可知 $x$ 也是有理数.

阅读更多

分析之【一元微分学】

这一部分主要集中讨论定义在闭区间上的一元实函数.

导数定义与性质

在此先给出定义在$\mathbb{R}$的子集上的可微函数的定义, 并给出计算导数的基本法则.

[定义][导数]

令$D\subset \mathbb{R}$,称函数$f:D\rightarrow \mathbb{R}$在点$x_0\in D$可微, 若满足:$$f’(x_0):= \lim_{\small\begin{array}{c}
x \rightarrow x_0 \
x \in D\setminus {x_0}\end{array}}
\frac{f(x)-f(x_0)}{x-x_0}=
\lim_{\small\begin{array}{c}
h \rightarrow 0\
h \neq 0\
x_0 +h\in D\end{array}}
\frac{f(x_0 +h)-f(x_0)}{h}$$
存在. 有时也用符号$\frac{df}{dx}(x_0)$替代$f’(x_0)$, 称为函数$f$在点$x_0$处的\textbf{导数(微商)}.
若$\forall x \in D$, $f$皆可微, 则称函数$f$在$D$上是可微的.

阅读更多

微积分之数列与级数

序列与极限

这里我们快速的过一遍关于数列与级数的这一些基础的内容.这些内容在复数域 $\mathbb{C}$ 上都是成立的.

度量空间 $X$ 中的序列 ${ x_n }$ 称收敛的, 当 $\exists x \in X$, $\forall \varepsilon >0$, $\exists N\in \mathbb{N}_+ $, $d(x_n, x)<\varepsilon$. 我们说序列 ${ x_n }$ 收敛于 $x$.记为
$$\lim_{n\rightarrow\infty}x_{n} = x.$$
如果序列不收敛, 我们称其为发散的.

阅读更多

Review - $\mathbb{R}^{n}$ 上的拓扑(2)

继续上一篇笔记, 接下来关注两个重要的拓扑性质——极限连续.

连续

从拓扑结构出发刻画 连续

关于一般拓扑空间的连续性, 有多个等价定义和命题[1], 这里暂且只提最基本的一个.

从拓扑空间 $(X,\mathscr{T})$ 到拓扑空间 $(Y,\mathscr{U})$ 内的映射 $f$ 称为连续的, 当且仅当对于 $\mathscr{U}$ 中的每一个开集, 其在 $\mathscr{T}$ 中的原像为开集; 每一个闭集, 其在 $\mathscr{T}$ 中的原像为闭集.

阅读更多

Review - $\mathbb{R}^n$ 上的拓扑(1)

这篇笔记主要内容是回顾 $\mathbb{R}^n$ 上的拓扑. 事实上,这里是要对由度量诱导的 $\mathbb{R}^n$ 的度量空间上的拓扑进行总结. 对于一般的拓扑空间(不依赖特定度量的性质)的拓扑性质, 更为详细的内容, 可以参考任意一本《点集拓扑学》或《一般拓扑学》之类的讲义. 事实上, 度量空间上的极限, 连续性, 和紧性都是空间拓扑性质的例子.

阅读更多

Review-微积分之【函数定义】

Mathematics links the abstract world of mental concepts to the real world of physical things without being located in completely in either.
**Ian Stewart** — Preface to second edition of *What is Mathematics?* by **Richard Courant** and **Herbert Robbins**, revised by **Ian Stewart** (1996).

说到微积分, 就要说到微积分所研究的主要对象——函数. 整个大千世界, 到处都是函数关系, 所以我们研究函数的目的不是为了纯理论的思辨, 而恰恰是我们对于理解世界的渴望, 对于各种经济利益的追求, 驱动着我们.

阅读更多