经典等周问题的复分析证明

经典等周问题的复分析证明

关于等周不等式的历史

直接引用文献中对于等周问题的介绍:

最早的几何不等式应该是著名的等周不等式, 该不等式具有悠久的历史. 等周问题最早由著名数学家 Joham Beynoulli 在 1679 年提出, 从等周定理的提出到现在, 人们关于等周问题的研究讨论从未停止过, 研究成果不断的推陈出新, 使得等周型不等式的研究领域欣欣向荣, 可以说等周定理是数学史上被证明次数最多的定理之一…

从实用性的角度来看, 在数学家正式提出等周定理之前, 人类乃至动物界已经在不自觉地使用这个定理了, 比如:人们使用定长的绳子圈地的过程中, 当绳子以圆形的方式圈地时, 得到的土地面积最大; 在寒冷的冬季, 人类或者动物会缩成一团, 为的就是在体积一定的情况下, 尽量缩小自己的表面积, 减小热量的损失;在物理中, 等周不等式问题和跟所谓的最小作用量有关, 一个直观的表现就是水珠的形状, 在没有外力的情况下(如失重的太空舱里), 水珠的形状是完全对称的球体, 这是因为当水珠体积一定时, 表面张力会迫使水珠的表面积达到最小值, 根据等周不等式的原理, 最小值在水珠形状为球状时达到…

等周不等式的一个经典的证明是利用变分方法, 本文中介绍由复分析, 调和分析领域著名数学家 Carleman 给出的复分析证明. 由此出发, 也引出了一系列函数空间理论上的问题之研究.

阅读更多

复分析学习笔记 - Littlewood 从属定理

从属性

首先介绍函数从属性的概念. 这一概念,最早来自于 Lindelöf 在 1908 年给出的一个定理, 现在常称为 Lindelöf 原理.

我们设 $f, g$ 均为 $\mathbb{D}$ 中的解析函数. 若存在解析函数 $\varphi: \mathbb{D}\rightarrow \mathbb{D}$, 使得 $\varphi(0) = 0$ 且 $f = g\circ \varphi$ 对于一切 $z\in \mathbb{D}$ 均成立, 则称 $f$ 从属于 $g$, 记为 $f\prec g$.

事实上, 设 $g(z)$ 为 $\mathbb{D}$ 上的单叶解析函数, 满足$g(0) = 0$. 再设 $f(z)$ 为 $\mathbb{D}$ 上的解析函数, 其满足$f(0) = 0$, 并且 $f$ 的值域落在 $F$ 的值域中. 于是函数 $\varphi(z) = g^{-1} \circ f$ 是 $\mathbb{D}$ 上良定的解析函数, 并且满足 $\varphi(0) = 0$, 以及 $|\varphi(z)|\leqslant 1$. 由 Schwarz 引理, 上述条件等价于要求: $|\varphi(z)|\leqslant |z|$ 且 $f = g\circ w$ 对于一切 $z\in \mathbb{D}$ 均成立.

几何直观上看, $f\prec g$ 意味着对任意的闭圆盘 $\overline{D(0,r)}, r\in(0,1)$ 在 $f = g\circ \varphi$ 作用下的像, 都落在 $g$ 对同一个圆盘作用的像中. 也可以说, 在某种意义下, $f$ 比 $g$ 要”小”. 而 Littlewood 从属定理正是对这一事实的精确表述.

阅读更多

三圆定理

凸函数

可进一步参考Convex Function of a Real Variable 以及 Convex Function of a Complex Variable.

Definition.
$I$ 为区间, 函数 $f: I\rightarrow \mathbb{R}$ 称为(下)凸函数, 若 $\forall x_1, x_2 \in I$ (不妨设$x_1 < x_2$), $\forall t\in (0,1)$, 有以下不等式成立:
$$f((1-t)x_1+tx_2) \leqslant (1-t)f(x_1) + tf(x_2).$$
集 $A\in \mathbb{C}$ 称为凸集, 若 $\forall z,w \in A$, $\forall 0\leqslant t\leqslant 1$, 点 $tz + (1-t)w \in A$.

$f(x)$ 为凸函数的条件可以等价的写成: $\forall x_1, x_2, x_3\in I$, 满足 $x_1 < x_3 < x_2$, 有
$$\begin{equation}
(x_2 - x_1) f(x_3) \leqslant (x_2 - x_3) f(x_1) + (x_3 - x_1) f(x_2).
\end{equation}$$
上式也可以写成
$$\begin{equation}
\left|\begin{matrix}
f(x_1) & x_1 & 1 \\
f(x_2) & x_2 & 1 \\
f(x_3) & x_3 & 1 \\
\end{matrix}\right| \geqslant 0
\end{equation}$$

凸函数(Convex)的几何意义是明显的. 即其上任意两点的连线, 必然位于两点之间函数图像的上方. 相对应的, 不等号反向的情况下称其为 Concave (上凸).

阅读更多
复分析小品-生成函数

复分析小品-生成函数

关于生成函数, 以下直接引用 wiki 百科上的介绍:

In mathematics, a generating function is a way of encoding an infinite sequence of numbers ($a_n$) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence.

Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the “variable” remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

正如这段介绍中所说, 生成函数就是描述数列的另一种不同的方法而已, 这种方法将整个序列视作了一个对象进行考虑, 更具体的说, 就是个幂级数, 其系数有着某些特定含义.

作为一篇小品, 本文只简单介绍一下生成函数定义, 并利用该方法研究斐波那契数列.

阅读更多
复分析小品-分式线性变换

复分析小品-分式线性变换

在复分析中的几何理论中, 有一个有趣而且重要的主题, 即共形映射. 其中有一类很自然的解析函数类——分式线性变换.

考虑以下有理函数

$$f(z) = \frac{az+b}{cz+d}$$

其中,$a,b,c,d$ 均为复数. 要使得以上函数具有良好的定义, 很自然, 需要要求 $c,d$ 不能同时为 $0$; 另一方面, 为了保证函数不会退化成常数函数, 则需要满足 $a/c \neq b/d$.

综合来说, 当以上有理函数满足 $ad-bc\neq 0$ 时, 我们称之为一个分式线性变换. 我们都知道:

  • 分式线性变换的复合还是一个分式线性变换变换.
  • 任何分式线性变换都可以表示为三种简单变换的复合, 即:平移、旋转、反演的复合.

关于分式线性变换的很多性质, 留到谈共形映射时再谈. 以下提供一个有意思的视角, 也许能帮助我们更容易的认识分式线性变换.

阅读更多