【习题来源】数学分析:第七版.(俄罗斯)卓里奇著;李植译. 北京:高等教育出版社,2019.2
- 表达式 $$n_1 + \frac{1}{n_2 + \frac{1}{\begin{matrix} n_3 + \ddots & \\ & \frac{1}{n_{k-1}+\frac{1}{n_k}}\end{matrix}}},$$其中 $n_i\in\mathbb{N}$, 称为链式分数或有限连分数, 而表达式 $$n_1 + \frac{1}{n_2 + \frac{1}{n_3 + \ddots}}$$称为无穷连分数. 在一个连分数中去掉某个链开始的所有分数, 所得分数称为这个连分数的渐进分数. 无穷连分数的渐进分数序列极限是该无穷连分数的值.
关于连分数的基本性质, 参考 Continued Fraction.
请证明: